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An Investigation of the development of small perturbatlons of gas dynamic
parameters behind the front of a plane shock wave moving from a highly rare-
fied (weightless) gas into a dense {perfect) gas 1s presented. The inter-
face of the two gases 1s assumed to be lightly curved. An analytical solu-
tion 1is given for a simplified case of Richtmyer's problem [1] which was
solved by him by numerical methods. Several papers dealt with the stability
of plane shock waves propagating in a homogeneous medlum, notably those by
Freeman [2], D'iakov [3], Zaldel' [4], and also the substantial work of
JIordanskii [5]. These investigations prove that a plane shock wave is sta-
ble. The solution of problems considered in this work follows the method
proposed in [4] whieh leads to a system of hyperbolic equations with conai-
tions along moving boundaries.

An analytic solution of this problem in linear approximation is given;
the amplitude of the wave front distortions, and the propagation of such
distortions in respect of time are analyzed. Proof 1s given that amplitude
changes of the front of a weak shock wave are lndependent of boundary condi-
tions; the law 1s the same for a wave from a lightly curved piston, as for
a wave penetrating through a lightly curved interface (3.22)

For a strong shock wave the amplitude of distortlion of its front is simi-
larly independent of the boundary conditions (3.15) and (3.16).

However, the amplitudes of distortion of the front of a shock wave, and
of a strong shock wave are notably different; 1in the first case the ampli-
tude is proportional to 'z, while in the second it is proportional to appro-
ximately -~ g 72,

1. Statement of prodlem. Let it be assumed that the interface of two
spaces, one fllled with an undisturbed gas, and the other with a weightless
gas, is in the plane ¥z . The term weightless gas, in this context, means
a gas of zero density and infinite velocity of sound, so that compressibility
effects in 1t are absent. At time ¢+ = 0 a pressure, constant in time, is
created in the welghtless gas which generates a plane shock wave, the front
of which at moment ¢ = O takes the form of the interface. A shock wave at
constant velocity 2 will move through the gas. As one of the spaces is
filled with a weightless gas, there 1is no reflected wave. Let o, and o,
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denote the initial density and the local velocity of sound, and p and o
the same parameters behind the shock wave front.

For simplicity of calculations we assume the dense gas to be a perfect
gas ‘with the 1sentropic index y . Denoting the velocity if the undisturbed
interface by U and the velocity of the wave in relation to the interface
by V , we have D = ¥V + U . Introducing parameter & = 1/M,®, where M =D/,
i1s the Mach number, we obtain the known relationship

p h V—-——P— Bz__V“___i—}—(h-—i)G _1+1

o 1F(R—1)5" =75 T T (1) —8 =11
Having thus obtained the solution of the problem for undisturbed condi-
tions, we shall analyze in linear approximation the propagation of the shock

wave at its entry into the lightly curved interface of the perfect and the
welghtless gases. Without limiting the generality, we shall assume that the
interface 1s slightly curved in one direction only, 1ts form being determined
by e(¥Y) . The explicit form of function ¢(¥) willl be established later.

We shall use the same symbols as in [4], and a system of coordinates in which
the interface 1s static.

G =

The following linearized equations apply to perturbations of pressure p’
and velocity components v,’ and v,’ 1n the region where O < r < V¢ (1-1)

v vy’ av,’ 1 dp’ v, 1 9p
2 x v ) x !l
T oe (ax +'ay‘_)_0' ++ax=0 + 5 v =0

Perturbations of density p’ are eliminated by the assumption of adlaba-
tic conditions Bp _ o’ (1 2)
ot at .
Conditions at the shock wave front are formulated in the manner presented

in (3]

23 , A48, & 1—5 .
___—Uay, v = op P —{F———zpoup, X=Vt (1.3)

Here £(Y,t) is the relative displacement of-the shock wave front from
the plane Yy = V¢ .

Initial conditions are established by the assumption that at ¢ = O, the
shock wave front coincides with the interface plane where v,’= 0 . It fol-
lows from (1.3) that for ¢ = 0 , p’= O , thus the boundary condition for
the pressure is p' -0 (1.4)

The tangential velocity component of 2, 1is initlally other than zero,
and equal to v/ =— — Ude /Y.

Let ¢ (Y) = A exp (ikY), where A and k are constants, and for small
perturbations kA < 1 (1.5)

The relationship between all parameters and the coordinate Y is deter-

mined by the factor exp (txY) . By introducing
plpc=w, v'=u, v/=—iv, kX=x lket=y (1.6)
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the problem 1s reduced to the solution of a system of equations

dw ou Ju ow v
a—y_l—a;-f_v_—_—O, 55_]_3;=0, E—w_—:O (1.7}
with boundary conditlons
w=wif(y) ferx=0, y=Aw, L _Bu toz=fE<1) (18)
Here
_ 1438 _in=-6p
A=, B-glTa—1 (1.9
with initial conditions
u=0, w=0 v=yv, tor z=y=0 (vo=Ukd) (1.10)
2. Solution of the bdboundary problem. Introducing new variables
y=rooshd, z—=rund, r=Vy"—z5, w0=z/y (2.1)

and after certain transformations, the system of equations (1.7) can be pre-
sented in the form

ow 1 du ou 1 ow .
o traetven8=0 Gty toamd=0
cosh v sinh @ dv =0 (.2)
or  r e YT

where function w satisfles Equation
éz_w {1 ow 1 %

T~ mam Tw=0 (2.3)
Boundary and inltial conditions are presented as follows:
w = wef (r) tor 0=0 (2.4)
= Aw, S _ (Buang, temly)w tfor 0= (2.5)
u=0 w=0 v=v, ftorr=0 (2.6)

For the solution of the system of equations (2.2) with boundary and ini-
tial conditions as in (2.%) to (2.6), we shall use the Laplace transform
with r as varliable along the real axis. The transformation functions for
boundary and initial conditlons are

o0
wy = wog ef(r)ydr=0, 6=0 2.7)
0

Uy = Awl, PpV1— vy = (B'mheo +°°’heo) wy, 0= 90 (2.8)

The system of equations (2.2) after the Laplacian transformation have the
form of Equations (2.7) and (2.8) in [#]. Substituting

p = simngq, Wy (pv e) = u%sh(q;qe) (29)

a wave equation 1s obtained for w,(q,e), a general solution of which has

the form %mm=Fm+®+mw_m (2.10)
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where p and ¢ are arbitrary functions. It will be seen from {2.7) that
®(g) = — p(g) for o = O , therefore,

w,(q,0) =F(g+0) —F(qg —0) (2.11)
We shall re-write the second equation of system (2.7) from [4] as follows
8
3g {Pu1—[F (g +8) + F (g —8)] + v;5n0} = 0
Consegquently
puy— F(g+8) + F (g —8)] + v, 508 = g (0) (2.12)
where ¢(6) 1s an arbitrary function. It 1s known from [6] that
f(r=0) =70 = lim pf, (p, 0) tor p—> oo

Therefore
w(0)=1lim pu, (p,6) =0,  lim fungus (g, 6)] = 2F (c0) = 0
~>00 q—>00
u(0) = lim puy = 0, lim pu; =0
P>00

q—>c0

(2.13)

with Re ¢ - « in Equation (2.12), the left-hand side becomes zero for
any value of 8 , i.e. o(f) = O . Taking § = §, in {2.12), and noting that
o{8,) = 0, we find from (2.7) and (2.8) that F(g) satisfies the equation
of finlte differences

sich 2¢ [F (g + 8o) + F (¢ — 00)] — (acosn2g + b) [F (g + 8,) —
— F (g — 8y)] = 20, sinb B, cosh ¢ (2.14)

where
1—8

= A= ‘_+‘°’>1 b = 2unnf (Binh B + con ) — A = 10

The existence and the uniqueness of solution of a similar equation was
proved in [4], while methods for the sclution of finite difference equations
are given in [7]. We shall seek the solution of {2.14%) for the particular
case of Re ¢ = » 1in the form of series

F(q)= 3 Ape-mia (2.15)

n=sl)
Substituting this expression into (2.14), and equating coefficients at
equal exponents, we obtain the following recurrent realtlons for the coef-

ficlents C, = 24,sinh (2n + 1) 0, :

2vgsinhy Cl — CO cothy, - {a — 2b)

Co = a +coth 0, ° a -+ coth 30,

(2.16)
[a + coth (2n + 3) eglcn+1 + 2an -+ {a — coth (2n — 1) 90} Cn-l =0

According to (2.11), we have

sinh {2 1)0 -
wy = — Z C",:h;iz::ii))e g(2n+1)8 (2.17)

Proof of convergence of this solution 1is given 1in the work of Zaldel'[4].
Reverting to the variable p= sirhg and using the known formula [ 6] for
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Bessel's function v n
J'n(r);.’ (Vpi+1—p)

Vr+1
we obtaln after certailn transformations
sioh (27 1) 6
w(rv 9) 2 C‘ﬂsmh(zn_i_”)e J2n+1 (r) (2.18)

Conversion to initial variables xr and ot 18 arrived at by means of

Formulas ——
r=kat Y 1T—1, T=X/ct

(2.19)
cosh (27 1)0 = Yo [(1 + 7)™ + (1 — )™ )1 — 7)™
Pressure at the shock wave front is gilven by the series
w(r,00) = — X CoJoni(s), s=ket YI—p (2.20)
n=0

Substituting Expression (2.20) into the se.und equation for boundary con-
ditions (2.5), we obtain after integration
o] 8
2 (r,80) = v — (Bsinb 8 -Heom ) 3 c,,gjzn+1 (z) dz (2.21)
n=0 0
We shall note the relationship which follows from Equations (2.1%) and
(2.17) for ¢ = O o
Vo
Wy (O, eo) = Q = — Z Co=—5——1—" (2.22)

o Bsinh 0y |-cosh@,

As the values of v(r,6,) and £(s) are proportional, the expression for
the form of the shock wave front 1is
£ (9 L e ()
ke
S — 5 DG\ i (@) de (2.23)
n=0 s
Using Bessel's functions, this result can be presented in the form which
does not contain integrals, Denoting

Go(r) = io.h (x)dz, G.(r) =S Jans (z) dz (n=1,2,3,...) (2.24)
Then T r
and we have Go(r) = Jo(r), Gu(r) =20 (r) + Gns (r) (2.25)

"go CiGn(r) =CoJo(r) + n§1 Cal2Jgn (r) 4 Gny (r)] =
= CoJo (r) + 2 ngl Cudon (r) + n§=]0 Cni1Gn(r) = CoJo (r) + 2n§1 Codan () +
+ CuJo (r) + El Cas1[2Tn (1) + Gy (r)] = (Cot C1) Jo (1) +

+ 2 n§1 (C" + Cn+1) Jon (7') + n§1 C'n+1Gn (")
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As (,~ 0 for n - = , we obtain, by continuing this process

%cng Jonii (z)dz = T4 (r) D) Co-+ D) Dpdyn () ( Da=2 cm) (2.26)
7= n=1 m=n

r n=>0

Summation of recurrent equation (2.16) for »n to = leads to the follow-
ing relationship: (2.27)

1
Dn = m{{a -}— coth (2?2 —i-‘ 1)801 Cn - [(I, — coth (2}1"'— 1)80] Cn—l} (R'—=1,2,.. )

Thus, the form of the shock wave frqnt is determined, in relation to time,
by the seriles
£ (s)

) Ty (s)— % }:]l Do (5) (2.28)

3. Certain limlbt cases. For the asymptotlc case with r 3> 1 we shall
use Bessel's function

Jona (r) = (— 1)“V.2§5[sin (rw%)—{—wg;%jcos (rm%)] (3.1)

We note from the finite difference equation (2.14) that for ¢ = 4tnm ,
a # b , therefore ™

S (=1 C,=0 (3.2)
=0
From (3.1) and (2.18) we find that

2. 1) < sinh(2n 4 1) 0
w(r,0) = “]/n—r Sin ( r= T) n§DC"sinh(2n F1)6y

_costr—Yam) 1 (_ qyne S (20 + 1)0 :
VEe 2 VG e 4@ =1 B

As (3.2) is fulfilled at the front of the shock wave, the first sum of
Expression {3.3) becomes zero, and

o
w(r,8) = _ NS M) (N =4 9 (—)"n(n+1) C,,) (3.4)
V 2ns? o

a) For the case of a strong shock wave (¢ = 0 , or U = =) we have
=0 and a = d ., It is to be expected that for this mode, the solution
of the asymptotic behavior will be substantially different, specifically,
the growth of perturbations will follow & different law. In this case Equa~
tion (2.1%) becomes (3.9)

sish ¢ [F (q -+ 0,) 4 F (g — 6p)] — acoshg [F (g + 8p) — F (g — 6,)] = 2vosinfy
As previously, we shall seek its solutlion in the form of a series (2.15),
and obtain for C(,
2vqsinhf,

Co = ;‘f?‘“m;o [a + coth (2n 4+ 1) Bp] Cn-+- [a — otB (2n — 1) 5] Crnoy — 0 (3.6)
The convergence of series with such coefficlients (, is evident. The
form of the front of a strong shock wave is determined, in relation to time,

by Formula (2.28) where p, follows the relationship
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3.7
- @ — coth O, _ a-—-COth(gf!*—'l)Oo .
Dl—— C() a , Dn————D _la—:"coth(zn‘f‘l)eo (n-2,3,...)
Asymptotics are determined as previously, and (3.8)
00
g sin(s— Yam) k2 N A
w(r,8) = M S (M = 2iw, (z 6 = ,?‘_:Jo( )" Ca)

b} It is of interest to analize the case of & strong wave for small
but finite values of & < 1. By using the integral form of Bessel's func-

tion [8], the pressure at the wave front will be represented by
1sin

w(r, ) = —Im [\ wa(g, 80)san(sinng) dg| (3.9)
From (2.1%) it follows that ’
2coshg

ws (g, Bo) =27 T acbg T {2 sinhg F' (q + 0p) — o sinhOp} (3.10)

It is evident that the fundamental component of integral (3.9) with e>1
is given by point g4 = #im , and that the expression in draces in {3.10)
can be suybstituted by its value for g = ¥¢n and & = O . We note that
coefficient ¥ 1in (3.4) for g = ¥in is

, 02
N=i ag 2 (¢, 60)

after double differentiation, it follows from (3.10) that

N:..U‘;‘_._Mb@ (for 8<€1) (3.11)

In this manner, taking into account (3.11), it follows after necessary
transformations of {3.9) and (3.10), that for s 3> 1 and § <£ 1

L
2M % sin (s sin @) cos @ sin 2¢
F {a cos 2@ + b)® } (sin 29)® e

Noting that the fundamental term of the integral 1is determined in the
vicinity of point x = sin o = 1 , and extending the lower limit of integra-~
tion to - =» , we obtaln

w(r, 60)~4V§MS sin(sz) Vi—= dx

w(r,8) ~=—

n (a—bp+8(1—2) (3.12)
Making ¢ = 1/8 (h -+ 1) 862, we obtain the sought Formula
MVEF1
w("’eo)"'—"““——'ﬁ—-ﬂe exp s—7 )| ¥(@)
" { d )] } (3.13)

V(@)= yi‘. [1—V ot et (e — % g eirtdn) |

Substituting this asymptotic expression for wu(r,8,) into the second
boundary condition (2.5) at the wave front, we have
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%ﬁg_},\,_. g;;‘i-% (h+1)8VhRe {exp {i <S-— 3_,;—)} t?(a)} (3.14)

The asymptotic behavior of function a-'fz(e) 1s established by substitu-
ting Expressions (3.4) and (3.9) into Pormula (2.5) which ylelds

Efs) N 1 sin(s—Ym)

A" 7 "vg 2Bsinn0, Vins (6 0) (3.15)
in accordance with {3.8}, we have for the case of & = O
£ {s) M €08 (s — Lhn
S 1)——‘;—/3:;;M (3.16)

& comparison of Formulas (3.15) and (3.16) with Formulas (3,16} in [4]
shows that the asymptotic decay of perturbations of the form of the shock
wave front in respect to time is, within the accuracy of the constant coef-
fleclents, the same for a shock wave moving from a lightly curved pilston (see
Formula (3.4) 1n [3]) and for a shock wave penetrating through a lightly
curved interface of two media.

¢) We shall now consider the case of 8 weak shock wave (s -~ 1} . Here
with tanh 6,« 8 - 1 , 8,~ =». In this case, of all the coefficients, 4,
there remains in (2.13) only the coefficient 4, . As for g=-1, » -0,
we have A= #v, . It follows from (2.18) that
w(r, 0) = — vJ, (r)sish O
We deduct from this that the formula for perturbations of pregsure p’
relative to the undlsturbed pressure p 1is

R J1{k 1 12) 4 g
- 2 A (41, — 1) kA exp (zkY)—l-f-{}-i_:w.wm ’_ﬁﬂ” ViE=3 (3.17)

The behavior of the front of a weak shock wave #{s) for 6&,~ 1 can be
easily established by noting that F{q + 8.} =~ 0 for g,~ =, We find from

(2.28) ws (q, 86) = — F (g — o) — — 20 sianBe—Meoshg (3.18)
As ¢4 =) p*+ 1 —p, therefore
wy (P, Bo) = — 200808, (V p* + 1 — p)? (3.19)
and by using Laplacian transform tables, we obtain
w (r, Bp) = — 4r 1oguisb8eJ, () (3.20)

Taking into account conditions {2.5) at the wave front, we f'ind from the
known function w(r,8,) that

8
v{r,ﬁg}=39{1—2R%@dx} for Ba>>1 (3:21)
4]

and using the lknown Bessel's functions, we dispose of Ilntegrals and obtain

£ (s) J1(s)
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which colncides with the respective formula given by Zaildel' in [4]. There-
fore, the law of generation of instability in a wave moving from a curved

piston, and for a wave penetrating a lightly curved interface of two medla,
1s the same.

4, The law of growth of perturbations of the interface. The penetration
of the shock wave through the interface is followed by the movement of the

interface itself. At the interface 0§ = O and the second of Equations (2.2)

takes the form ou { Bw

- - Y/
o T =0 (2.1)
Substituting into this the expression for w(r,s) , we obtailn

du _ 1 (2n 41
¥ i 2 *—@’;—# Jons1 (r) (4.2)

We shall use the known Bessel's functions [8] for the integration, and
arrive at the expression for the movement of perturbatlons of the interface

o Cn r n
u = uy + nz_o 5| )0 (@) 2+ o (1) —2 kZO o ()] (4.3)
- ; =

A second Integratlion ylelds the expression for the amplitude of distor-
tions of the interface

r
n-1

X—X0+ %o zlmm[rgfo(x)dx—r.fl(r)——Jo(r)—{—2.[2,,(7')-—
" 0

n k
2 S =2 Y (t—=To() + 200 () —2 2 Tu ()] (44)
k=1 k=1 =1

We note that for a strong shock wave in a perfect gas with the isentropic
index y =5/, , the expression ¢ — coth (2n — 1) 0, =0, for n = 2, con-
sequently coefficients (¢, and D, with subscripts 2,3,4 becomes zero. The
analytical solution is of the form

D holo) + S (), s=ka VI—F (4.5)

X
X 0.1 +o.9[r

(L )

To(x) dz—rdy (r) = T, (r)] WAAE (4.6)

The asymptotic behavlior of the dlstorted interface for r > 1 1is found
easily from Formula (4.4)

A/ o=

In conclusion, the author wishes to express his sincere gratitude to
R.M. Zaidel' for his help, and to L.A. Galin for a useful discussion.
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